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Abstract— Design and analysis of low complexity timing error
detectors (TEDs) for quasi-orthogonal space-time block coding
systems are presented. The detectors operate on data symbols
and approximate decision variables, producing timing error mea-
surement robust to channel fading. In addition to the estimator
S-curve, we obtain the estimation error variance and TED SNR,
with the analysis carried out under the assumptions of perfect
data and channel knowledge at the receiver. Simulations are
used to examine the effects of decision errors on the detector
characteristics, and to evaluate the overall system performance,
where the proposed TEDs are incorporated into the receiver
timing loop. Receivers with perfect channel knowledge and pilot-
based channel estimation are considered. Symbol error rate
results show timing synchronization loss of less than 0.5 dB for
a receiver with perfect channel information.

I. INTRODUCTION

Timing acquisition in space-time coded modems was first
addressed in [1], where the receiver obtained timing informa-
tion by maximizing the oversampled log-likelihood function
(LLF), derived from orthogonal training sequences. It has been
shown [2], that the algorithm in [1] is highly sensitive to the
oversampling ratio used. Modifications reducing the required
oversampling have been presented in [2], [3].

In contrast to the work described above, which deals pri-
marily with the problem of maximum-likelihood (ML)-based
timing acquisition using a training preamble, we consider the
problem of timing error detector (TED) design for low com-
plexity timing error tracking. A TED for Alamouti orthogonal
space-time block coding (OSTBC) was presented and analyzed
in [4], [5], with the theory subsequently generalized to higher
order OSTBC in [6]. In this sequel, we consider an extension
of the TED design and analysis to quasi-OSTBC (QOSTBC).
Analytical properties are derived assuming data and channel
knowledge at the receiver, while the effects of erroneous data
decisions and channel estimation errors are evaluated by means
of simulations.

In what follows, the system overview is described in Section
II, while Section III presents the theory of TED design and
analysis for QOSTBC. System simulations evaluating the
performance of QOSTBC receivers incorporating the designed
TED are presented in Section IV. We conclude with a sum-
mary in Section V.

II. SYSTEM OVERVIEW

Consider an OSTBC system with Nt transmit and Nr

receive antennas, where the transmitter encodes Ns informa-

tion symbols over Nt antennas in Nc time slots, resulting
in a code rate of R = Ns/Nc. Using boldface notation for
matrices, we denote the lth Nt × Nc code block by Xl, and
its (i, k)th entry by xi(lNc + k). Note that l is the block
index, k = 0, . . . , Nc − 1 is the time slot within the block
and i = 1, . . . , Nt is the transmit antenna index. One of
the advantages of OSTBC systems lies in the fact that if the
columns of Xl are orthogonal, the receiver complexity can
be greatly reduced by decoupling the decoding process into
Ns independent operations [7]. It has been shown, however,
that the maximum rate for Nt > 2 is R = 3/4 [7]. In
order to achieve rate one codes for Nt > 2, the property of
full code orthogonality must be relaxed, resulting in quasi-
OSTBC. QOSTBCs have been been shown [8] to provide
only half of the maximum diversity order, and to address this
shortcoming a subset of the data symbols is drawn from a
constellation rotated by an angle φ, resulting in a φ-QOSTBC
system [8]. Denoting the mth information symbol encoding
block Xl by al

m, where m = 0, . . . , Ns − 1, and considering
a Ns = 4 without loss of generality, we have

ãl
m =

{
al

m m = 1, 2
al

mejφ m = 3, 4.

The encoding process for Xl can be expressed by [9],

Xl =
Ns−1∑
m=0

�{al
m}Am + i�{al

m}Bm, (1)

where the operators �{·} and �{·} return the real and imag-
inary parts of their arguments, respectively, and Am and Bm

are integer code matrices of dimension Nt ×Nc. An example
of a Nt = 4 antenna QOSTBC is given by [8]

X(q4) =




a1 −a∗
2 −a∗

3 a4

a2 a∗
1 −a∗

4 −a3

a3 −a∗
4 a∗

1 −a2

a4 a∗
3 a∗

2 a1


 . (2)

Following data encoding, the pulse shaping is split between
the transmitter and the receiver, each employing a root raised
cosine (RRC) filter. The combined Nyquist raised cosine pulse
is represented by g(t). We assume a frequency-flat Rayleigh
fading channel modeled by a Nr ×Nt matrix H. It’s compo-
nents, denoted by hji, correspond to the state of the channel
from ith transmit to jth receive antenna and are assumed to be



independent and identically distributed (iid) with a U-shaped
power spectrum and maximum symbol-normalized Doppler
frequency of fDT , assumed to be known.

The receiver diagram is given in Figure 1. We assume that
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Fig. 1. Receiver Diagram.

the received signal is sampled with a timing error ε equal on
all branches and constant for the duration of Xl. We model ε
by ε = τ − τ̂ where τ is the timing offset at the receiver and τ̂
is the timing correction applied by the timing synchronization
algorithm. It was shown in [6] that the lth Nr × Nc received
matrix Yl is given by

Yl = Hl

∑
n

Xl+nGε,n + Nl, (3)

where Hl and Nl denote the channel state and noise matrices,
respectively, and Gε,n is a Nc ×Nc Toeplitz matrix given by

Gε,n =




gε
−nNc

gε
−nNc+1 gε

−nNc+2 · · ·
gε
−nNc−1 gε

−nNc
gε
−nNc+1

. . .

gε
−nNc−2 gε

−nNc−1 gε
−nNc

. . .
...

. . .
. . .

. . .


 ,

where gε
n � g(nT+ε). The summation in (3), marks the effects

of intersymbol interference (ISI) due to ε, where Gε,n → 0
for large |n|.

The decoding is accomplished by means of optimization of
the ML metric. Due to the partial orthogonality properties of
the QOSTBC codes, the ML metric can be decomposed into
a sum of independent terms. For the code given in (2), the
metric is given by [8]

M = f14(s1, s4) + f23(s2, s3), (4)

where f14(s1, s4) and f23(s2, s3) are derived in [8].

III. TIMING ERROR DETECTOR

A. Timing Error Detector Design

It was shown in [6], [10], that for an OSTBC system,
a measurement of ε, can be obtained using data symbols
(or decisions) and decision variables. The average of the
TED output represents the timing error measurement (TEM),
referred to as the S-curve. As described in [6], the TEM in
the form of ε̂ = gε

−1 − gε
1 returns a linear measurement of ε,

referred to as the difference of threshold crossings. We now
show, that a similar method can be used to design TEDs for

φ-QOSTBC, with the modification to QOSTBC obtained by
setting φ = 0.

We note that an OSTBC receiver utilizes explicit expres-
sions for the decision variables, which were subsequently used
for TEM estimation in [6]. Due to the fact that the QOSTBC
ML decoding in (4) cannot be fully decoupled, no explicit
decision variables are available for TED design. Thus, in what
follows, we use approximate decision variables, analogous to
the OSTBC expressions, that is

ζ̃m = ‖H‖−2
[�{tr(YHHAm)}− j�{tr(YHHBm)}]. (5)

One can show that ζ̃m can be expressed as the decision
variable sm with a perturbation δζm

, that is

ζ̃m = sm + δζm
, (6)

where, for the example code in (2), the perturbation terms δζm

are given by [10, Chapter 6]

δζ1 = 2‖Hl‖−2
∑Nr

j=1
�(hj1h

∗
j4 − h∗

j2hj3)s4

δζ2 = −2‖Hl‖−2
∑Nr

j=1
�(hj1h

∗
j4 − h∗

j2hj3)s3

δζ3 = −2‖Hl‖−2
∑Nr

j=1
�(hj1h

∗
j4 − h∗

j2hj3)s2

δζ4 = 2‖Hl‖−2
∑Nr

j=1
�(hj1h

∗
j4 − h∗

j2hj3)s1.

We note that the numerator of δζm
contains only cross product

terms in hji, while the denominator contains magnitude terms.
It will be shown that by virtue of the iterative operation of
the receiver timing loop, the effect of δζm

will be small,
allowing for a valid timing error measurement. We stress, that
the variables ζ̃m are used strictly for the purpose of TEM
estimation, while the data decisions sm are obtained from (4).
Finally, the use of (5) allows a semi-analytical derivation of
the TED mean and estimation variance.

Similarly to the approach in [6], we consider a general
expression for the TED output given by

ε̂ = �
(∑

k

αkãnα,k
ζ̃mα,k

+ βkã∗
nβ,k

ζ̃mβ,k

)
, (7)

with ζ̃m given by (5). In the design process we aim to select
the parameter set, that is,

S = {αk, βk,mα,k, nα,k,mβ,k, nβ,k}, (8)

such that the S-curve, the average of the TED in (7), is in the
form of a difference of threshold crossings TEM gε

−1 − gε
1.

The TED is the input to the timing loop which performs the
required averaging.

We evaluate the expectation of (7), beginning with the
expectation over data and the noise conditioned on the channel
response, followed by the expectation over H. In order to
maintain compact notation, we denote the expectation condi-
tioned on H by EH{·}, while the expectation over H will
be denoted by EH{·}. Total expectation is thus given by



E{·} = EH{EH{·}}, where EH{·} is always computed by
simulation as the argument is too complex for analysis.

Following an approach similar to that for OSTBC in [6],
as shown in the Appendix, the expectation of the individual
components in (7) is given by

�{EH{ãnζ̃m}} = ρ2‖H‖−2×
tr

{
(AmGH

ε AH
n − BmGH

ε BH
n )�(HHH)

}
.

(9)

Similarly, one can show that

�{EH{ã∗
nζ̃m}} = ρ2‖H‖−2×

tr
{
(AmGH

ε AH
n + BmGH

ε BH
n )�(HHH)

}
.

(10)

Using (9) and (10), we have that the S-curve, conditioned on
H, for a φ-QOSTBC TED in (7), is given by an expression
identical to that obtained for OSTBCs in [6], that is

EH {ε̂} = ρ2 ‖H‖−2 tr
{
Γ� (

HHH
)}

, (11)

where ρ2 is a constellation dependent constant, defined by

ρp � E{(aR
i )p} = E{(aI

i )
p},

and the matrix Γ, dependent on S in (8), is given by

Γ =
∑

k

[
αk

(
Amα,k

GH
ε AH

nα,k
− Bmα,k

GH
ε BH

nα,k

)
+βk

(
Amβ,k

GH
ε AH

nβ,k
+ Bmβ,k

GH
ε BH

nβ,k

)]
.

(12)

Examining (11) and (12), one notes that the S-curve of a TED
in (7) is independent of the rotation angle φ. Because of the
equivalence of (11) and (12) to the expressions obtained for
OSTBC in [6], we use the same design rules as those derived
for OSTBC. We conclude that if Γ satisfies [6]

Γ = f(Gε)I + D,

where

1) f(Gε) is a scalar function of Gε returning a difference
of threshold crossings (TEM) approximating gε

−1 − gε
1

2) D is an antisymmetric matrix,

then
EH {ε̂} = ρ2f(Gε). (13)

Since (13) is independent of H, such a TED is referred to as
robust [6]. If only condition 1) is satisfied, then [6]

EH {ε̂} = ρ2f(Gε) + δε̂, (14)

where δε̂, dependent on H, is referred to as the TEM bias,
given by

δε̂ = ρ ‖H‖−2
Nt∑

m=1

Nt∑
i=1
i�=m

Nr∑
j=1

dmi�
(
h∗

jihjm

)
, (15)

where dmi denotes the (m, i)th entry of D. We note that the
numerator of (15) contains only channel cross product terms,
while the denominator contains magnitude terms by virtue of
‖H‖2. Thus, due to the averaging operation of the timing loop,
the effect of the bias term will be small, resulting in a quasi-
robust TED. For a robust TED, (13) does not require averaging

over the H, and thus (13) represents the TED S-curve. For
a quasi-robust TED, the S-curve is obtained by computing
the expectation of the bias δε̂ in (14) over the channel fading
matrix H, that is

E {ε̂} = ρ2f(Gε) + EH{δε̂}, (16)

where the expectation EH{δε̂} is evaluated by simulation.

B. Estimation Error Variance

We now examine the estimation error variance of the TED
in (7), that is

σ2
ε̂ = E

{
ε̂2

} −
[
E

{
ε̂
}]2

. (17)

Examining (7), one notes that the solution to E
{
ε̂2

}
can be

obtained by considering the expectations EH{ãR
i ãR

j ζ̃R
mζ̃R

n },
EH{ãI

i ã
I
j ζ̃

I
mζ̃I

n} and EH{ãR
i ãI

j ζ̃
R
mζ̃I

n}. Due to the complexity
of the analysis, the reader is referred to [10, Appendix C] for
details of the derivations.

As shown in [10, Appendix C], EH{ãR
i ãR

j ζ̃R
mζ̃R

n } is given
by

EH
{

ãR
i ãR

j ζ̃R
mζ̃R

n

}
= ‖H‖−4 tr

{
ρ2
2Φ̃

RR
ijmn + ρ2

N0

2
∆̃RR

ijmn

}
,

(18)
where Φ̃RR

ijmn is given by (19) and

∆̃RR
ijmn =

{
0 i �= j

(Am ⊗ An)ΛN (Ω′
RR + Ω′

II) i = j,
(20)

where Ωij and Ω′
ij are defined by

ΩRR = �(HHH) ⊗�(HHH) ΩII = �(HHH) ⊗�(HHH)

ΩRI = �(HHH) ⊗�(HHH) ΩIR = �(HHH) ⊗�(HHH)

and

Ω′
RR = �(H) ⊗�(H) Ω′

II = �(H) ⊗�(H)
Ω′

RI = �(H) ⊗�(H) Ω′
IR = �(H) ⊗�(H).

The NcNc × NrNr matrix ΛN is given by

ΛN (i, j) =

{
1 i = nNr + n + 1, j = mNc + m + 1
0 elsewhere

for n = 0, . . . , Nr − 1 and m = 0, . . . , Nc − 1. In (19), we
have defined constellation dependent constants

ρ′p � E{(aR
i )p(aI

i )
p} ρ′′φ � E{(ãR

i )3(ãI
i )}

ρ′2φ � E{(ãR
i )2(ãI

i )
2} ρ4φ � E{(ãR

i )4},
which are evaluated in [10, Appendix C].

Similarly, the solution to EH{ãI
i ã

I
j ζ̃

I
mζ̃I

n} is given by [10,
Appendix C]

EH
{

ãI
i ã

I
j ζ̃

I
mζ̃I

n

}
= ‖H‖−4 tr

{
ρ2
2Φ̃

II
ijmn + ρ2

N0

2
∆̃II

ijmn

}
,

(21)
with Φ̃II

ijmn is given by (22) and

∆̃II
ijmn =

{
0 i �= j

(Bm ⊗ Bn)ΨN (Ω′
RR + Ω′

II) i = j.
(23)



Φ̃RR
ijmn =




(
AmGH

ε,0 ⊗ AnGH
ε,0

)(
AH

j ⊗ AH
i + AH

i ⊗ AH
j

)
ΩRR i �= j(

AmGH
ε,0 ⊗ AnGH

ε,0

)[
(ρ4φ

ρ2
2
− 1)

(
AH

i ⊗ AH
i

)
ΩRR + (ρ′

2φ

ρ2
2
− 1)

(
BH

i ⊗ BH
i

)
ΩII

+ρ′′
φ

ρ2
2

((
AH

i ⊗ BH
i

)
ΩRI +

(
BH

i ⊗ AH
i

)
ΩIR

)]
+

∑
l

∑Ns−1
k=0

(
AmGH

ε,l ⊗ AnGH
ε,l

)[(
AH

k ⊗ AH
k

)
ΩRR +

(
BH

k ⊗ BH
k

)
ΩII

]
i = j

(19)

Φ̃II
ijmn =




(
BmGH

ε,0 ⊗ BnGH
ε,0

)(
BH

j ⊗ BH
i + BH

i ⊗ BH
j

)
ΩRR i �= j(

BmGH
ε,0 ⊗ BnGH

ε,0

)[
(ρ4φ

ρ2
2
− 1)

(
BH

i ⊗ BH
i

)
ΩRR + (ρ′

2φ

ρ2
2
− 1)

(
AH

i ⊗ AH
i

)
ΩII

−ρ′′
φ

ρ2
2

((
AH

i ⊗ BH
i

)
ΩIR +

(
BH

i ⊗ AH
i

)
ΩRI

)]
+

∑
l

∑Ns−1
k=0

(
BmGH

ε,l ⊗ BnGH
ε,l

)[(
BH

k ⊗ BH
k

)
ΩRR +

(
AH

k ⊗ AH
k

)
ΩII

]
i = j

(22)

Finally, the expectation EH{ãR
i ãI

j ζ̃
R
mζ̃I

n}, is given by

EH
{

ãR
i ãI

j ζ̃
R
mζ̃I

n

}
= ‖H‖−4 tr

{
µφΦ̃RI

ijmn

}
, (24)

where

Φ̃RI
ijmn =

(
AmGH

ε,0 ⊗ BnGH
ε,0

)×((
AH

i ⊗ BH
j

)
ΩRR −

(
BH

j ⊗ AH
i

)
ΩII

) (25)

and µφ is defined as

µφ =

{
ρ2
2 i �= j

ρ′2φ i = j.

Using the general results given by (18), (21) and (24), the
estimation variance for a particular TED is obtained using (17)
with E{ε̂} computed via (11) and (12), where

E{ε̂2} = EH

{
‖H‖−4 tr

{
ρ2
2ΣΦ̃ + ρ2

N0

2
Σ∆̃

}}
. (26)

The expectation EH{·} must be carried out by simulation,
as will be done in Section III-C. The quantities ΣΦ̃ and
Σ∆̃ correspond to the linear combinations of Φ̃RR

ijmn, Φ̃II
ijmn,

Φ̃RI
ijmn (defined by (19), (22) and (25)) and ∆̃RR

ijmn, ∆̃II
ijmn

(defined by (20) and (23)), respectively, as determined by the
polynomial expansion of E{ε̂2} for a particular TED.

Unlike the S-curve for φ-QOSTBC, the estimation variance
is dependent on the rotation angle φ. This is, however, only
the case for Φ̃RR

ijmn, Φ̃II
ijmn, Φ̃RI

ijmn of ΣΦ̃ where i = j and
where i refers to the data symbol from a rotated constellation.

Finally, using (16) and (17), we define the TED SNR as

SNRTED =
E2{ε̂}

σ2
ε̂

. (27)

C. TED Example

As an example, consider the Nt = 4 QOSTBC code X(q4),
which is defined by (2) 1. The TEM function for X(q4) can be
obtained [6], [10] from the average of the simple combining
rule

ε̂(q4) = �(a0ζ1 − a1ζ0) = aR
0 ζR

1 − aI
0ζ

I
1 − aR

1 ζR
0 + aI

1ζ
I
0 .
(28)

1More examples of TED expressions can be found in [10, Chapter 6].

The TED in (28) corresponds to S in (8) with βk = 0∀k,
α1 = −α2 = 1, nα,1 = mα,2 = 0, mα,1 = nα,2 = 1.

Substituting the values of S into (12) and carrying out the
matrix multiplications will result in Γ in the form of

Γ(q4) = 2




gε
−1 − gε

1 0 0 −2gε
−2

0 gε
−1 − gε

1 2gε
−2 0

0 −2gε
2 gε

−1 − gε
1 0

2gε
2 0 0 gε

−1 − gε
1


 .

(29)
Examining Γ(q4) in (29), we note that the matrix does not fully
satisfy the antisymmetry condition, and hence the resulting
TED will be quasi-robust, with the S-curve given by

E{ε̂(q4)} = 2ρ2(gε
−1 − gε

1) + EH{δε̂(q4)},
and a TEM bias of

δε̂(q4) = ‖H‖−2 2ρ2

Nr∑
j=1

[
2
(
gε
−2 − gε

2

)�(h∗
2jh3j + h∗

1jh4j)
]
.

We now examine the TEM estimation variance. In order to
solve for EH{ε̂2} using (26), we first obtain the components
of ΣΦ̃ and Σ∆̃ by computing ε̂2 from (28). Squaring (28)
will lead to ΣΦ̃ in the form of

ΣΦ̃ = Φ̃RR
1100 + Φ̃RR

0011 − 2Φ̃RR
1010 + Φ̃II

1100 + Φ̃II
0011

− 2Φ̃II
1010 − 2Φ̃RI

1100 − 2Φ̃RI
0011 + 2Φ̃RI

1001 + 2Φ̃RI
0110,

where Φ̃RR
ijmn, Φ̃II

ijmn and Φ̃RI
ijmn are defined by (19), (22)

and (25), respectively. Similarly, the quantity Σ∆̃ for X(q4)

is given by

Σ∆̃ = ∆̃RR
1100 + ∆̃RR

0011 + ∆̃II
1100 + ∆̃II

0011,

with ∆̃RR
ijmn and ∆̃II

ijmn defined by (20) and (23), respectively.
We note that since only indices of data drawn from the non-
rotated constellation are present, the variance for X(q4) will
be independent of φ.

D. Properties of Examples of TEDs

Figures 2 and 3 show the S-curve and TED SNR for ε̂(q4),
respectively. The expectation over H of the TED bias and error
variance was computed by simulation by averaging over 104



channel instances. In addition, we verify the theoretical curves
via simulation, where the data was sampled at a fixed offset
with the timing loop disabled. The S-curve and error variance
were obtained by averaging ε̂ and (ε − ε̂)2, respectively, over
all code blocks transmitted. Finally, the effect of data decision
errors was evaluated by replacing the data symbols in (28)
by their corresponding data decisions for SNR Ēs/N0 = 10
dB and 20 dB, where Ēs and N0 denote the average symbol
energy, and the noise power spectral density, respectively.
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Fig. 3. TED SNR.

We note that in the case of a data-aided TED, the simulated
results follow the theoretical expressions very closely. Exam-
ining the decision-directed S-curve, we note that incorrect data
decisions reduce the linear estimation region to approximately
|ε| /T ≈ 0.20 for SNR of 20 dB, with the range extended
to |ε| /T ≈ 0.30 with increased diversity order. While the
linear estimation range in Figure 2 is sufficient for timing
loop operation, it is approximately 20% smaller than that
for OSTBC TEDs [10]. This can be attributed to the use of
approximate decision variables in (5) in timing estimation.

Finally, we should note that the property evaluated in Figure
3 is the output SNR of the TED, which constitutes the input
SNR of the timing loop. Since the timing loop performs
an averaging operation by virtue of the loop filter and the

threshold device, the TED SNR will be significantly increased
by virtue of the integration process.

IV. SYSTEM SIMULATIONS

We present simulation results evaluating the performance
of receiver employing the TED ε̂(q4) in its timing loop 2. We
consider frequency-flat Rayleigh fading with a normalized
Doppler frequency of fDT = 0.01. It is assumed that the
receiver has performed coarse timing acquisition, which would
typically be done via a training sequence. The timing drift
was simulated by perturbing the sampling phase τl, where the
interval between timing slips, measured in symbol intervals
and denoted by Nτ , was modeled by a Gaussian random
variable, with a mean of N̄τ and a variance σ2

Nτ
= 0.1N̄τ . The

drift direction was random and equiprobable, and the step size
fixed to T/16. The mean normalized timing error bandwidth
is given by

B̄τT =
T/16
N̄τT

=
1

16N̄τ
.

Timing estimation was done using the TED given by (28).
Since the focus of the investigation is the tracking performance
of the detector, the timing estimation was done without the
data knowledge at the receiver. Hence the data symbols am

in (28) were replaced by their estimates âm. The timing error
estimate for code block l, that is ε̂l, was passed through a
first-order, IIR, timing loop filter with the output of

ε̂′l = αε̂′l−1 + (1 − α)ε̂l,

where the loop constant α = 0.9. When ε̂′l exceeded a
threshold value εth = 0.25, the timing correction τ̂l was
adjusted by a fraction of the symbol interval T/8, according
to the polarity of the error estimate.

In addition to the receiver with perfect channel knowledge,
we evaluate the effects of channel estimation errors for a pilot
symbol assisted modulation (PSAM) receiver, as described in
[1]. The data was divided into frames consisting of known
orthogonal pilot blocks, followed by 4 OSTBC data code
blocks. The received sequence was decimated to recover the
pilot symbols, which were used to obtain the channel estimates
for the pilot slots. These were subsequently interpolated to
obtain channel fading values for the data portion of each frame.
In the results presented here, Wiener interpolation filter with
9 interpolants was used.

In Figure 4 we present SER performance for timing drift
bandwidth B̄τT = 10−4 3. Results for channel state informa-
tion at the receiver (CSIR) and PSAM receivers are presented,
in addition to reference curves for perfect channel and timing
estimation, and perfect timing with PSAM channel estimation.

The results demonstrate that the CSIR receiver, which was
assumed in the TED design process, is able to track the timing

2For detailed description of the simulation setup as well as additional
results, the reader is referred to [6] [10, Chapter 5].

3Current state of the art temperature compensated crystal oscillators
(TCXOs) have a frequency stability of well under 10 ppm, corresponding
to B̄τ T < 10−5 [11]. SER results for varying values of B̄τ T can be found
in [10, Chapter 6].
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Fig. 4. QPSK SER Performance.

variation with a performance drop of only 0.5 dB. In the case
of PSAM receiver, the SER performance exhibits degradation
in the high SER region. By observing the reference curves for
perfect timing with PSAM channel estimation, we note that the
TED performance is sensitive to the channel estimation errors.
Since the performance for the CSIR receiver is very good, we
conclude that improved channel estimation technique should
be considered.

V. CONCLUSION

We have presented the design and analysis of QOSTBC
TEDs, showing that a low complexity timing measurement
can be obtained by operating on data symbols and approximate
decision variables. The S-curve, estimation variance and TED
SNR were solved for under ideal conditions. Simulation results
were used to analyze the above properties with decision
errors, and to evaluate the system performance including the
effects of channel estimation. SER results showed a timing
synchronization loss for CSIR of under 0.5 dB.

APPENDIX I

We evaluate the expectation of the general form of TED
given in (7) by considering EH{ãnζ̃m} and EH{ãnζ̃∗m} 4.
Using (5) and (3), we can write

EH{ãnζ̃m} = ‖H‖−2 tr
{
AmGH

ε EH
{

ãn�(X̃HHHH)
}

−jBmGH
ε EH

{
ãn�(X̃HHHH)

}}
,

which can be expanded to [10, Chapter 6]

EH{ãnζ̃m} =‖H‖−2×
tr

{
AmGH

ε

[
E

{�(ãR
n X̃H) + j�(ãI

nX̃H)
}�(HHH)

−E
{�(ãR

n X̃H) + j�(ãI
nX̃H)

}�(HHH)
]

−jBmGH
ε

[
E

{�(ãR
n X̃H) + j�(ãI

nX̃H)
}�(HHH)

+E
{�(ãR

n X̃H) + j�(ãI
nX̃H)

}�(HHH)
]}

.

(30)

4A more detailed derivation is presented in [10, Chapter 6].

Reversing the order of �{·} and �{·} with the expectation op-
erator E{·}, we now solve for �{E(ãR

n X̃H)}, �{E(ãI
nX̃H)},

�{E(ãR
n X̃H)} and �{E(ãI

nX̃H)}. While one must distin-
guish between the cases for non-rotated constellations (n =
1, 2) and rotated ones (n = 3, 4), it can be shown that the
expectations in (30) are independent of the rotation angle φ
[10, Chapter 6]. Using (1), one can show that

�{
E{ãR

n X̃H}} = �
{

E
{

ãR
n

Ns−1∑
m=0

ãR
mAH

m − jãI
mBH

m

}}
= E{(aR

n cos(φ) − aI
n sin(φ))2}AH

n

= ρ2AH
n ,

(31)

where we used the fact that E{aR
n aR

m} = 0 for m �= n. The
last equality, which assumes E{(aR

n )2} = E{(aI
n)2} = ρ2,

holds true since since E{aR
n aI

n} = 0 . Using the same
approach, we have

�{
E

{
ãI

nX̃H
}}

= −ρ2BH
n , (32)

and, finally, �{
E{ãI

nX̃H}} = 0, �{
E{ãR

n X̃H}} = 0
Substituting (31) and (32) into (30), after some algebraic

manipulation, taking the real part of (30) results in (9).
The solution to EH{ãnζ̃∗m} can be obtained using the same
approach as for EH{ãnζ̃m}.
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